A Unique 5' Translation Element Discovered in Triticum Mosaic Virus.

نویسندگان

  • Robyn Roberts
  • Jincan Zhang
  • Laura K Mayberry
  • Satyanarayana Tatineni
  • Karen S Browning
  • Aurélie M Rakotondrafara
چکیده

UNLABELLED Several plant viruses encode elements at the 5' end of their RNAs, which, unlike most cellular mRNAs, can initiate translation in the absence of a 5' m7GpppG cap. Here, we describe an exceptionally long (739-nucleotide [nt]) leader sequence in triticum mosaic virus (TriMV), a recently emerged wheat pathogen that belongs to the Potyviridae family of positive-strand RNA viruses. We demonstrate that the TriMV 5' leader drives strong cap-independent translation in both wheat germ extract and oat protoplasts through a novel, noncanonical translation mechanism. Translation preferentially initiates at the 13th start codon within the leader sequence independently of eIF4E but involves eIF4G. We truncated the 5' leader to a 300-nucleotide sequence that drives cap-independent translation from the 5' end. We show that within this sequence, translation activity relies on a stem-loop structure identified at nucleotide positions 469 to 490. The disruption of the stem significantly impairs the function of the 5' untranslated region (UTR) in driving translation and competing against a capped RNA. Additionally, the TriMV 5' UTR can direct translation from an internal position of a bicistronic mRNA, and unlike cap-driven translation, it is unimpaired when the 5' end is blocked by a strong hairpin in a monocistronic reporter. However, the disruption of the identified stem structure eliminates such a translational advantage. Our results reveal a potent and uniquely controlled translation enhancer that may provide new insights into mechanisms of plant virus translational regulation. IMPORTANCE Many members of the Potyviridae family rely on their 5' end for translation. Here, we show that the 739-nucleotide-long triticum mosaic virus 5' leader bears a powerful translation element with features distinct from those described for other plant viruses. Despite the presence of 12 AUG start codons within the TriMV 5' UTR, translation initiates primarily at the 13th AUG codon. The TriMV 5' UTR is capable of driving cap-independent translation in vitro and in vivo, is independent of eIF4E, and can drive internal translation initiation. A hairpin structure at nucleotide positions 469 to 490 is required for the cap-independent translation and internal translation initiation abilities of the element and plays a role in the ability of the TriMV UTR to compete against a capped RNA in vitro. Our results reveal a novel translation enhancer that may provide new insights into the large diversity of plant virus translation mechanisms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Triticum Mosaic Virus 5’ Leader Binds to Both eIF4G and eIFiso4G for Translation

We recently identified a remarkably strong (739 nt-long) IRES-like element in the 5' untranslated region (UTR) of Triticum mosaic virus (TriMV, Potyviridae). Here, we define the components of the cap-binding translation initiation complex that are required for TriMV translation. Using bio-layer interferometry and affinity capture of the native translation apparatus, we reveal that the viral tra...

متن کامل

Occurence and Yield Effects of Wheat Infected with Triticum Mosaic Virus

Occurence and Yield Effects of Wheat Infected with Triticum Mosaic Virus Authors: D.L. Seifers, J.T. Martin, J.P. Fellers Submitted to: Plant Disease Triticum mosaic virus (TriMV) was discovered recently and little is known about the virus’ biology and potential to cause yield reductions. TriMV has been found all across the Great Plains and this study examined whether TriMV infection would re-o...

متن کامل

Triticum mosaic virus: a distinct member of the family potyviridae with an unusually long leader sequence.

The complete genome sequence of Triticum mosaic virus (TriMV), a member in the family Potyviridae, has been determined to be 10,266 nucleotides (nt) excluding the 3' polyadenylated tail. The genome encodes a large polyprotein of 3,112 amino acids with the "hall-mark proteins" of potyviruses, including a small overlapping gene, PIPO, in the P3 cistron. The genome of TriMV has an unusually long 5...

متن کامل

Population Dynamics of Triticum Mosaic Virus in Various Host Species

A series of serial passages of Triticum mosaic virus (TriMV) was performed in winter wheat under greenhouse conditions to examine the dynamics of sequence variation in the TriMV population. The variation within the protein 1 (P1) and the coat protein (CP) of TriMV was assessed by single-strand conformational polymorphism (SSCP) assay, followed by nucleotide sequencing. Three lineages were estab...

متن کامل

A ribosome-binding, 3' translational enhancer has a T-shaped structure and engages in a long-distance RNA-RNA interaction.

Many plant RNA viruses contain elements in their 3' untranslated regions (3' UTRs) that enhance translation. The PTE (Panicum mosaic virus-like translational enhancer) of Pea enation mosaic virus (PEMV) binds to eukaryotic initiation factor 4E (eIF4E), but how this affects translation from the 5' end is unknown. We have discovered a three-way branched element just upstream of the PEMV PTE that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of virology

دوره 89 24  شماره 

صفحات  -

تاریخ انتشار 2015